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Abstract The modelling of plastic beams experiencing softening is studied. The homogeneous cantilever beam
loaded by a concentrated force at its extremity is considered. This simple structural problem with gradient bending
moment allows an analytical treatment of the evolution problem. A gradient plasticity model is developed in order
to overcome Wood’s paradox. Surprisingly, explicit gradient plasticity models do not eliminate this paradox, since
the beam response is found to be not continuous with respect to the loading parameter. A new implicit gradient
plasticity model is used in this paper. It is shown that the new regularized problem is well-posed. Closed-form
solutions of the elastoplastic deflection are finally derived. These results are valid for the beam bending problem,
but also for the simple analogy of the bar subjected to distributed axial force.
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1 Introduction

Historically, moment–curvature relationships with softening branch were first introduced for reinforced concrete
beams. In 1968 Wood did point out some specific difficulties occurring during the solution of the evolution prob-
lem for plastic softening models. More precisely, he highlighted the impossibility of the plastic softening beam
to flow, a phenomenon sometimes called Wood’s paradox. Since this seminal work [1], many papers have been
published on softening models (see for instance [2] or the book of Jirasek and Bažant [3] for an extensive review).
A lot of non-local models have been developed since the last four decades, and it is expected that the non-local
moment–curvature relationship can overcome Wood’s paradox.

Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress
depends not only on the state variables at that point. The first models of this type were applied in the 1960s to
the modelling of elastic waves dispersion in crystals. Non-local elasticity was further extended to non-local elas-
toplasticity by Eringen in the early 1980s [4,5]. Non-local inelastic models (damage or plasticity models) were
later successfully used as a localization limiter with a regularization effect on softening structural response. The
non-local character of the constitutive law, generally introduced through an internal length, is restricted to the
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374 N. Challamel

loading function (damage loading function or plasticity loading function). Pijaudier-Cabot and Bažant [6] elab-
orated a non-local damage theory, based on the introduction of the non-locality in the damage loading function.
This theory has the advantage of leaving the initial elastic behaviour unaffected, and controlling the localization
process in the post-peak regime. It is worth mentioning that this idea was already used before to model shear bands
[7,8]. Explicit gradient plasticity models, including the numerical implementation in a Finite Element Code, were
developed at the beginning of the 1990s [9,10]. The question of defining the non-local variable from the local
variable is debated by Peerlings et al. for gradient damage models [11]. The distinction between explicit gradient
damage models (the non-local strain is defined explicitly from the local strain and its derivative) and implicit gradi-
ent damage models (the non-local strain is obtained implicitly from an integral operator) is established. Following
these works devoted to damage models, implicit gradient plasticity models have been also derived by Engelen et al.
[12,13]. The theoretical challenges related to these non-local inelastic theories (plasticity or damage) were mainly
oriented towards the relevancy of an integral or a gradient-based formulation [14,15], the choice of an explicit or
an implicit gradient models [11–13], the justification of relevant boundary conditions associated with the non-local
nature of the constitutive law [9,16] or the thermodynamic background of these models [17–19].

Despite the numerous papers devoted to the modelling of softening media with a non-local constitutive law,
very few works have been published on the application of such models at the beam scale, or for simple structural
members (see also [20] for this problem). Historically, moment–curvature relationships with softening branch were
first introduced for reinforced concrete beams. Wood did point out some specific difficulties occurring during the
solution of the evolution problem for plastic softening models [1]. More precisely, he highlighted the impossibility
of the plastic softening beam to flow, a phenomenon sometimes called Wood’s paradox (see also [21]). It is expected
that the non-local moment–curvature relationship can overcome Wood’s paradox. An explicit gradient plasticity
model [9,10], has been considered by Challamel [22] for the beam subjected to a bending moment. However, this
gradient plasticity model does not eliminate the ill-posedness of the evolution problem in the presence of a moment
gradient (as for instance in the case of homogeneous cantilever beams), since the beam response is not continuous
with respect to the loading parameter: Wood’s paradox is also encountered for such classical gradient plasticity
models, except in some specific inhomogeneous beams [23]. It is worth mentioning that similar difficulties were
suggested by Pamin [24] for the three-dimensional problem. We show in this paper that Wood’s paradox can be
overcome with an implicit gradient plasticity model. The homogeneous cantilever beam loaded by a concentrated
force at its extremity is first considered. An implicit gradient plasticity model is developed in order to control the
localization process induced by microcracking phenomena. It is shown that the regularized problem is well-posed.
Closed-form solutions of the elastoplastic deflection are finally derived. The length of the plastic zone grows during
the softening process until an asymptotic limited value, which depends on the characteristic length of the material.

2 The bending problem

A homogeneous cantilever beam of length L is loaded by a vertical concentrated load P at its end (Fig. 1). One rec-
ognizes the Galileo cantilever beam previously solved by Galileo himself (1564–1642) using equilibrium, strength
and dimensional arguments [25,26]. Of course, no constitutive model was introduced at this early stage. Never-
theless, this pioneering study is often considered as one of the first results of a kinematic method of yield design
(see, for instance, [27]). The cantilever beam loaded by a concentrated force can be viewed as a typical case of
plastic beams with non-constant bending moment. This plastic softening beam typically models reinforced concrete
beams, or steel beams in the presence of local buckling [3,23,28]. The axial and transversal coordinates are denoted
by x and y, respectively, and the transverse deflection is denoted by w (Fig. 1). Further, the beam is assumed to be
sufficiently restrained in order to prevent lateral–torsional buckling (see the recent papers [29,30] on the modelling
of lateral–torsional buckling of cantilever beams). The symmetrical section has a constant second moment of area
denoted by I (about the z-axis). We assume that plane cross-sections remain plane and normal to the deflection
line and that transverse normal stresses are negligible (Euler–Bernoulli assumption). Accordingly, the curvature χ

is related to the deflection through:
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Fig. 1 The cantilever beam
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χ (x) = w′′(x), (1)

where a prime denotes the derivative with respect to x . The problem being statically determinate, equilibrium
equations directly give the moment distribution along the beam:

M(x) = P(L − x) with P ≥ 0 and x ∈ [0; L]. (2)

At the end of the beam, the displacement of concentrated force P will be denoted by v and used to control the
loading process:

v = w(L). (3)

Accordingly, the loading process is completely specified by the displacement history.

3 Non-local constitutive law

The moment–curvature relationship (M, χ) considered is bilinear with a linear elastic part and a linear non-local
curvature-softening part. The moment–curvature relationship for the elastoplastic beam is given by:

M = EI(χ − χp), (4)

where E is the Young modulus of the homogeneous beam and χp is the plastic curvature.
The elasto-plastic model is a classical plastic model with isotropic negative hardening (softening). The yield

function f is given by:

f (M, M∗) = |M | − (
Mp + M∗) , (5)

where M∗ is an additional variable which accounts for the loading history, and Mp is the initial plastic bending
moment. M∗ is related to a non-local plastic curvature variable χ̂p through the linear model:

M∗ = kχ̂p, (6)

where the plastic modulus k is negative for softening models. A characteristic length lc is introduced in the definition
of the non-local plastic curvature χ̂p. The definition of this non-local variable depends on the model considered,
namely an explicit gradient plasticity model, and an implicit gradient plasticity model (see [12,13,31]). For a
homogeneous plastic curvature state, this non-local variable is reduced to the local one

(
χ̂p = χp

)
.

4 Structural analysis

The maximum bending moment occurs at x = 0, where the beam is clamped. Plastic rotation starts as soon as the
bending moment reaches the plastic bending moment Mp. The maximum elastic displacement at the beam end vY

and the corresponding load PY are given by:

vY = Mp L2

3EI
and PY = Mp

L
. (7)
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For a displacement v smaller than vY (v ≤ vY ), the beam remains elastic and the deflection can be computed using
the elastic solution:

v ≤ vY ⇒ EIw(x) = − P

6
x3 + P L

x2

2
with P = 3

EI

L3 v. (8)

The relationship (8) gives the deflection w as a function of the displacement at the end of the beam v which will be
used to control the loading process. For P = PY , we obtain the characteristic deflection wY (x):

v = vY ⇒ E IwY (x) = − Mp

6L
x3 + MP

x2

2
. (9)

For v greater than vY (v ≥ vY ), the plastic regime starts and the beam can be split into an elastic and a plastic
domain. The size of the plastic domain is denoted by l0 ≤ L (see Fig. 1). The governing equations in the plastic
domain are:

x ∈ [0; l0] :
∣
∣∣∣∣∣

E I
(
w−′′

(x) − χp(x)
)

= P (L − x)

χ̃p(x) = P (L − x) − Mp

k

, (10)

where w− denotes the deflection in the plastic region. Moreover, one has to ensure that the plastic curvature evolution
is monotonic during the loading. The elastic adjacent domain is governed by:

x ∈ [l0; L] : E Iw+′′
(x) = P(L − x); (11)

w+ is the deflection in the elastic region. The boundary conditions can be summarised as:
∣∣∣∣

w− (0) = 0
w−′

(0) = 0
and

∣∣∣∣
w− (l0) = w+ (l0)
w−′

(l0) = w+′
(l0)

. (12)

The deflection w(x) and the rotation w′(x) must be continuous functions of x (in particular at the intersection of
the elastic and the plastic domains).

5 Explicit gradient plasticity model

In the explicit gradient plasticity model, the non-local curvature may be defined as:

χ̂p = χp = χp + l2
c χ ′′

p . (13)

This model is called an explicit gradient plasticity model, as the non-local plastic curvature may be directly expressed
in terms of the plastic curvature and its derivatives (see [31] for this convention). The boundary conditions are
expressed as (see for instance [23]):

χp (l0) = 0, χ ′
p(l0) = 0 and χ ′

p(0) = 0. (14)

The plastic curvature and its derivative are assumed to be continuous with respect to the spatial coordinate x . The
third boundary condition at the clamped end is the extra boundary condition.

The linear differential equation (10) dealing with χp (with the non-local plastic curvature defined in Eq. 13) can
be written as:

x ∈ [0; l0] : χp + l2
c χ ′′

p = P(L − x) − Mp

k
. (15)

The general solution of this differential equation is as follows:

χp(x) = A cos
x

lc
+ B sin

x

lc
+ P (L − x) − Mp

k
. (16)

The three boundary conditions defined by (14) lead to a nonlinear system of three equations with three unknowns
A, B and l0:

A cos
l0
lc

+ B sin
l0
lc

+ P(L − l0) − Mp

k
= 0, − A

lc
sin

l0
lc

+ B

lc
cos

l0
lc

− P

k
= 0,

B

lc
− P

k
= 0. (17)
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Fig. 2 Apparent hardening process for the explicit
softening gradient plasticity model - β versus ξ

Fig. 3 Possible negative values of the non-local plastic curvature
for the explicit gradient plasticity softening model—β = 0.05
(hardening range)

The following dimensionless parameters may be introduced:

β =
(

1 − PY

P

)
L

lc
≤ 0 and ξ = l0

lc
≥ 0. (18)

The resolution of the system (17) leads to a relationship between the dimensionless loading parameter β and the
dimensionless size of the plastic zone ξ :

β = ξ + cos ξ − 1

sin ξ
for sin(ξ) �= 0. (19)

The solution ξ = 2nπ has to be excluded, as this solution cannot be connected to the elastic solution. An asymptotic
expansion for small values of ξ shows that, in this last case:

ξ � 1 ⇒ β ∼ ξ

2
. (20)

As a consequence, it is clear that for positive values of ξ , this softening gradient plasticity model leads to a global
hardening process in the vicinity of the plastic load PY (see Fig. 2):

ξ → 0+ ⇒ β → 0+. (21)

It may be convenient to introduce the dimensionless non-local plastic curvature:

x∗ ∈ [0; ξ ] : χp
∗ (

x∗) = x∗ − β(ξ) with

∣∣∣∣∣∣
∣

x∗ = x

lc

χp
∗ = |k| χp

Plc

. (22)

In this case, for positive values of β (hardening process in the vicinity of the plastic load), the non-local plastic
curvature χp can take negative values which is not physically admissible (see Fig. 3):

β ≥ 0 ⇒ χp (0) = P L − Mp

k
≤ 0. (23)

The only admissible range for β is to take negative values (for the softening problem), and the only admissible
range for ξ is to take positive values; however, for β → 0− it is continuously ξ < 0; see Fig. 2). Hence, for β being
in the admissible range, ξ is outside its admissible range, and the physically sensible solution with a plastic zone of
finite length does not exist. Hence, one cannot connect the elastic and the plastic solution, as shown by Challamel
and Hjiaj [23]. As a consequence, Wood’s paradox is observed for such explicit gradient plasticity models (see
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Fig. 4 Wood’s paradox—explicit gradient plasticity models
Fig. 5 Evolution of the plastic zone ξ versus the loading param-
eter β; Softening regularization for κ ∈ ]1; 2]

Fig. 4). Such a paradox can also be observed in the case of a tensile bar under a stress gradient (as considered in [32]
for a bar with an inhomogeneous section). It is shown numerically that the tension load increases at the beginning
of the plastic process (apparent hardening process), despite the linear intrinsic softening constitutive law. Such a
numerical result [32] clearly shows, according to (23), that the non-local plastic strain could be negative, a result
which is physically questionable for the tension-loading test. Hence, the specific phenomenon highlighted in this
paper for explicit gradient plasticity models has been obtained already in the literature from a numerical point of
view.

6 Implicit gradient plasticity model

In the implicit gradient plasticity model, the non-local curvature may be defined as:

χ̂p = χp + κ
(
χp − χp

)
. (24)

It is worth mentioning that such a combination of local and non-local plastic variables was initially proposed by
Vermeer and Brinkgreve [33]. The non-local plastic curvature χp is defined as the solution of the modified Helmholtz
equation:

χp − l2
c χp

′′ = χp. (25)

This model depends on a regularization scalar factor κ . The specific case κ = 2 leads to the simplified formulae:

κ = 2 ⇒ χ̂p = χp + l2
c χp

′′. (26)

The boundary conditions are expressed as:

χp (l0) = 0, χp
′ (l0) = 0 and χp

′ (0) = 0. (27)

An important difference with standard implicit gradient plasticity models (see for instance [12,13,31]), however, is
that the extra boundary conditions are valid over the plastic domain, rather than over the entire domain (as was also
shown by Fleck and Hutchinson [16]). It can be shown that Wood’s paradox would also be observed if boundary
conditions are applied at the physical boundary of the domain (see Appendix). Hence, the implicit gradient plasticity
model considered in this paper can be considered as a new model, which has not yet been studied in the literature.

The system is now solved for the non-local plastic curvature χp:

χp + l2
c (κ − 1) χp

′′ = P (L − x) − Mp

k
(28)
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with the three boundary conditions expressed in term of the unknown variable χp:

χp(l0) − l2
c χp

′′(l0) = 0, χp
′(l0) = 0 and χp

′(0) = 0. (29)

The nature of the differential equation (28) depends on the sign of κ − 1. The system is first solved when this term
is negative (κ < 1). The general solution of the differential equation (28) is then written as:

x ∈ [0; l0] : χp(x) = A cosh
x

lc
√

1 − κ
+ B sinh

x

lc
√

1 − κ
+ P(L − x) − Mp

k
. (30)

The three boundary conditions defined by Eq. 29 lead to a nonlinear system of three equations with three unknowns
A, B and l0:

− κ

1 − κ
A cosh

l0
lc

√
1 − κ

− κ

1 − κ
B sinh

l0
lc

√
1 − κ

+ P(L − l0) − Mp

k
= 0,

A

lc
√

1 − κ
sinh

l0
lc

√
1 − κ

+ B

lc
√

1 − κ
cosh

l0
lc

√
1 − κ

− P

k
= 0,

B

lc
√

1 − κ
− P

k
= 0. (31)

The relationship between the dimensionless loading parameter β and the dimensionless size of the plastic zone ξ

is found to be:

β = ξ − κ√
1 − κ

1 − cosh ξ√
1−κ

sinh ξ√
1−κ

. (32)

An asymptotic expansion for small values of ξ shows that, in this last case:

ξ � 1 ⇒ β ∼ 2 − κ

2(1 − κ)
ξ for 1 − κ > 0. (33)

As for the explicit gradient plasticity model, the first-order term in Eq. 33 is positive (apparent hardening process)
and Eq. 21 still holds (it could also be shown that the non-local plastic curvature χp could be negative in this case).
For instance, an asymptotic expansion of the non-local plastic curvature at the clamped end shows that:

ξ � 1 ⇒ χp (0) ∼ Plc
k

1

2(1 − κ)
ξ < 0 for 1 − κ > 0. (34)

This means that Wood’s paradox is still observed for such an implicit gradient plasticity model for this range of
regularization factor (Fig. 4 is still valid in this case). On the other hand, for positive values of κ − 1 (κ > 1), the
general solution of the differential equation (28) is written as:

x ∈ [0; l0] : χp(x) = A cos
x

lc
√

κ − 1
+ B sin

x

lc
√

κ − 1
+ P(L − x) − Mp

k
. (35)

The nonlinear system of three equations with three unknowns A, B and l0 is now written as:

κ

κ − 1
A cos

l0
lc

√
κ − 1

+ κ

κ − 1
B sin

l0
lc

√
κ − 1

+ P(L − l0) − Mp

k
= 0,

(36)
− A

lc
√

κ − 1
sin

l0
lc

√
κ − 1

+ B

lc
√

κ − 1
cos

l0
lc

√
κ − 1

− P

k
= 0,

B

lc
√

κ − 1
− P

k
= 0

and the load-plastic-zone relationship is finally written as:

β = ξ − κ√
κ − 1

1 − cos ξ√
κ−1

sin ξ√
κ−1

for sin

(
ξ√

κ − 1

)
�= 0. (37)

The solution ξ = 2nπ
√

κ − 1 has to be excluded, as this solution cannot be connected to the elastic solution. The
asymptotic expansion for small values of ξ shows that, in this last case:

ξ � 1 ⇒ β ∼ 2 − κ

2 (1 − κ)
ξ for 1 − κ < 0. (38)
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Fig. 6 Evolution of the plastic zone ξ versus the loading param-
eter β; κ ∈ ]1; 2]

Fig. 7 Evolution of the plastic curvature χ∗
p for three loading

cases—κ = 2

Equation 38 is identical with Eq. 33, meaning that the first-order term does not depend on the sign of 1 − κ . The
interesting result is that the first-order term may take negative values for κ ∈ ]1; 2]; see also Fig. 5. In this case, for
β being in the admissible range, ξ is inside its admissible range, and the plastic zone may spread; see also Fig. 5:

ξ → 0+ ⇒ β → 0−. (39)

Therefore, the connection of the elastic and the plastic solution is implicitly fulfilled with this regularization method.
A second-order analysis would show that the case κ = 2 can be included in the analysis:

κ = 2 ⇒ β = ξ − 2
1 − cos ξ

sin ξ
∼ − ξ3

12
for ξ � 1. (40)

In other words, Wood’s paradox may be overcome by taking κ larger than unity. Furthermore, we will show
that uniqueness prevails for the softening evolution considered in the paper, and the softening problem is clearly
regularized for κ ∈ ]1; 2].

Figure 6 shows the evolution of the plastic zone ξ in term of the positive dimensionless parameter |β|. The
parameter |β| varies between 0 and tends towards an infinite value when P tends towards zero. For each value of the
regularization parameter κ , there is only one curve crossing the origin which relates the plastic zone to the loading
parameter. This means that the regularized problem becomes well-posed. It has to be recalled that a well-posed
problem (in the Hadamard sense) is a problem which has at least one solution (existence of the solution) and at
most one solution (uniqueness) [34]. Moreover, the size of the plastic zone tends towards an asymptotic value for
large values of |β| (and sufficiently small values of P):

ξ0 = π
√

κ − 1 for κ > 1. (41)

7 Resolution of the cantilever case

The solution of the plastic curvature in the plastic zone can finally be written as:

x∗ ∈ [0; ξ ] : χ∗
p(x∗) = − κ√

κ − 1

cos ξ√
κ−1

− 1

sin ξ√
κ−1

cos
x∗

√
κ − 1

− κ√
κ − 1

sin
x∗

√
κ − 1

+ x∗ − β(ξ)

with

∣
∣∣∣∣∣∣

x∗ = x

lc
χ∗

p = |k| χp

Plc

, (42)
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Fig. 8 Evolution of the non-local plastic curvature χp
∗ for three

loading cases—κ = 2
Fig. 9 Response of the elastoplastic beam P

PY
versus �

�Y
− κ =

2; E I
k = −5; lc

L = 0.1

where ξ is computed from β (or P) from Eq. 37. The size of the plastic zone increases as |β| increases and the
monotonic assumption of plastic growth can be checked (see for instance Fig. 7). In Fig. 7, the slope at the origin of
the plastic curvature function appears to differ significantly from zero (as assumed in the explicit gradient plasticity
model). The numerical case treated in Fig. 7 is based on κ = 2 and then, ξ0 = π .

It is interesting to notice that the non-local plastic curvature is not continuous at the boundary between the plastic
and the elastic zones (see Fig. 8). The non-local plastic curvature grows linearly in the plastic zone:

x∗ ∈ [0; ξ ] : χp
∗ (

x∗) = −√
κ − 1

cos ξ√
κ−1

− 1

sin ξ√
κ−1

cos
x∗

√
κ − 1

− √
κ − 1 sin

x∗
√

κ − 1
+ x∗ − β(ξ)

with χp
∗ = χp

Plc
|k| . (43)

The rotation function θ(x) (or w′(x)) is calculated from integration of the differential equation:

θ ′(x) = χp(x) + P(L − x)

E I
with θ(0) = 0. (44)

The rotation in the plastic zone is obtained from:

θ−(x) = P

(
1

E I
+ 1

k

) (
Lx − x2

2

)
− Mp

k
x + κ

Pl2
c

k

cos
(

l0
lc

√
κ−1

)
− 1

sin
(

l0
lc

√
κ−1

) sin

(
x

lc
√

κ − 1

)

−κ
Pl2

c

k

[
cos

(
x

lc
√

κ − 1

)
− 1

]
. (45)

The rotation in the elastic zone is derived from the continuity of the rotation along the elastoplastic boundary (see
Eq. 12):

θ+(x) = P L

E I
(x − l0) − P

2E I

(
x2 − l2

0

)
+ θ− (l0) . (46)

The rotation at the end of the beam is denoted by � (and �Y = PY L2/2E I ). The relationship between this normal-
ized rotation and the loading parameter is simplified in

�

�Y
= P

PY
+ 2E I

k

(
l0
L

P

PY
− P

2PY

(
l0
L

)2

− l0
L

)

. (47)
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Fig. 10 Response of the elastoplastic beam P
PY

versus v
vY

−κ =
2; E I

k = −5; lc
L = 0.1

Fig. 11 Influence of the stiffness ratio on the response of the
elastoplastic beam P

PY
versus v

vY
-; κ = 2; lc

L = 0.1

An example of softening response is shown in Fig. 9 for the load-rotation response. The regularization of the implicit
gradient plasticity model is longer more ambiguous. The deflection in the plastic zone is obtained by integrating
the rotation given by Eq. 45:

w−(x) =
(

P L

E I
+ P L − Mp

k

)
x2

2
−

(
P

E I
+ P

k

)
x3

6

−κ
√

κ − 1
Pl3

c

k

cos
(

l0
lc

√
κ−1

)
− 1

sin
(

l0
lc

√
κ−1

)
[

cos

(
x

lc
√

κ − 1

)
− 1

]
− κ

Pl2
c

k

[
lc

√
κ − 1 sin

(
x

lc
√

κ − 1

)
− x

]
. (48)

The deflection in the elastic zone is derived from the continuity condition given by Eq. 12:

w+(x) = P Lx2

2E I
− Px3

6E I
+

[

w−′
(l0) − P Ll0

E I
+ Pl2

0

2E I

]

x +
[

w− (l0) − l0w
−′

(l0) + P Ll2
0

2E I
− Pl3

0

3E I

]

. (49)

The evolutions of the deflection are shown on Figs. 10–13. The global ductility increases as the stiffness ratio |EI/k|
increases, or the length ratio lc/L increases. Moreover, the regularization parameter κ controls the beginning of the
softening regime(κ ∈ ]1; 2]). A flat transition with a horizontal tangency corresponds to κ equal to 2.

8 Constant bending moment

The implicit gradient plasticity model is also studied in case of constant bending moment (M(x) = �). The beam
may also be split into a plastic zone and an elastic one, as shown in Fig. 14 (see also [22]):

x ∈ [0; l0] : χp + l2
c (κ−1) χp

′′ = �−Mp

k
with χp (l0)−l2

c χp
′′ (l0) = 0, χp

′ (l0) = 0 and χp
′ (0) = 0.

(50)

In this case, the plastic zone does not evolve, and is given for κ > 1 by

ξ = nπ
√

κ − 1 with ξ = l0
lc

≥ 0, (51)
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Fig. 12 Influence of the characteristic length on the response of
the elastoplastic beam P

PY
versus v

vY
− κ = 2; E I

k = −5
Fig. 13 Influence of the regularization parameter κ on the re-
sponse of the elastoplastic beam P

PY
versus v

vY
− lc

L = 0.1;
E I
k = −5 and κ ∈ ]1; 2]

l0

xO

L
y

Fig. 14 Beam under constant bending moment

l0
xO

L
y

Fig. 15 Beam under constant bending moment—Non-unique-
ness of the solution

where n is an integer. The number n of solutions to take into account depends on the total length of the beam. It
is remarkable that the plastic length associated with n equal to 1 is the one asymptotically obtained in presence of
moment gradient (see Eq. 41). The plastic curvature is finally obtained from

χ∗
p

(
x∗) = 1 − (−1)n cos

(
x∗

√
κ − 1

)
with

∣
∣∣∣∣∣∣

x∗ = x

lc
χ∗

p = k
χp

� − Mp

(52)

and the non-local plastic curvature is written as

χp
∗ (

x∗) = 1 − (−1)n κ − 1

κ
cos

(
x∗

√
κ − 1

)
. (53)

However, for the specific case of constant bending moment, the problem is generally still ill-posed as the system
possesses an infinite number of solutions, in addition to the homogeneous one. It is sufficient to notice that the
plastic zone can move along the beam, as suggested by Fig. 15 (in this case, when the plastic zone is free on both
sides, the size of the dimensionless plastic zone ξ is equal to 2nπ

√
κ − 1 with n integer). This structural case can

be understood as a degenerate case from a mathematical point of view, linked to reasons of symmetry.
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Fig. 16 Bar under
distributed axial force

l0

xO

L
y

q

9 Bar under normal force. Analogy

As remarked for instance by Bažant and Zubelewicz [20], a direct analogy between the beam problem and the bar
problem may be found. The direct analogue of the bending problem with linearly varying bending moment is the
bar problem with distributed axial force (see Fig. 16). In this case, the normal force N varies linearly:

N (x) = q(L − x) (54)

with q being the uniformly distributed axial force. The constitutive relationship, analogous to Eq. 4 for the bending
problem, is given by

N = ES(ε − εp), (55)

where S is the cross-section area, ε is the total strain, and εp is the plastic strain. The yield function and the gradient
plasticity model follow from Eq. 5 and Eq. 6:

f (N , N∗) = |N | − (
Np + N∗) = 0 with N∗ = kε̂p = k

[
εp + (κ − 1) l2

c εp
′′] ; κ > 1. (56)

The boundary conditions in the plastic zone are written as follows

εp (l0) = 0, εp
′ (l0) = 0 and εp

′ (0) = 0. (57)

The relationship between the plastic length and the loading parameter is given by Eq. 37, with the following notation:

β =
(

1 − qY

q

)
L

lc
≤ 0, qY = Np

L
and ξ = l0

lc
≥ 0. (58)

The solution of the plastic strain in the plastic zone is similar to that of Eq. 42:

x∗ ∈ [0; ξ ] : ε∗
p

(
x∗) = − κ√

κ − 1

cos ξ√
κ−1

− 1

sin ξ√
κ−1

cos
x∗

√
κ − 1

− κ√
κ − 1

sin
x∗

√
κ − 1

+ x∗ − β(ξ)

with

∣∣∣
∣∣

x∗ = x
lc

ε∗
p = |k| εp

qlc

. (59)

The axial displacement in the plastic zone is similar to the rotation in the bending problem
(
χ(x) = θ ′(x)

)
:

ε(x) = u′(x). (60)

The axial displacement at the end of the bar u (x = L) is denoted by U (and UY = qY L2/2E S). Hence, the
softening curve q/qY versus U/UY , is obtained from Fig. 9, by replacing P/PY by q/qY , and �/�Y by U/UY .

10 Generalisation to three-dimensional media

The one-dimensional implicit gradient plasticity model presented in this paper may be easily extended to three-
dimensional media. The yield function f given by Eq. 5 can be generalized by

f
(
σ , σ ∗) = σ̃ − (

σY + σ̃ ∗) with σ̃ ∗ = kε̂p. (61)
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In this expression, σY and k denote the initial yield stress and the plastic modulus (k is negative for softening
models); σ̃ is an equivalent stress and σ̃ ∗ is an additional variable which accounts for the loading history; σ̃ ∗ is
related to a non-local effective plastic strain variable ε̂p , defined by

ε̂p = εp + (κ − 1) l2
c ∇2εp with κ > 1, (62)

where ∇2 denotes the Laplacian operator. The non-local effective plastic strain is defined as the solution of the
modified Helmholtz equation:

εp − l2
c ∇2εp = ε̃p. (63)

Here ε̃p denotes the usual effective plastic strain. The homogeneous natural boundary conditions hold:

ε̃p = 0 or n.∇εp = 0. (64)

It is worth mentioning that the thermodynamic background of such a model has not yet been established, and is
still an open problem to our knowledge. In the case of a moving internal elasto-plastic boundary, both boundary
conditions of Eq. 64 hold. We insist upon the fact that the present boundary conditions must be applied at the
elastic–plastic boundary, and not at the external boundary of the problem, as postulated by most standard implicit
gradient plasticity models. The main reason is that Wood’s paradox would be observed if boundary conditions are
postulated at the physical boundary of the body (see the Appendix).

11 Conclusions

This paper deals with the modelling of plastic beams experiencing softening. The homogeneous cantilever beam
loaded by a concentrated force at its extremity has been considered. A gradient plasticity model has been devel-
oped in order to overcome Wood’s paradox. Surprisingly, explicit gradient plasticity models may not eliminate
this paradox, since the beam response is found not to be continuous with respect to the loading parameter for
softening evolutions. This phenomenon is well understood, from an asymptotic expansion. It is shown, in case of
explicit gradient plasticity models, that the non-local plastic curvature could have negative values for a tension bar,
a phenomenon which is not acceptable from a physical point of view.

A new implicit gradient plasticity model has been presented in this paper. It has been shown that the new regu-
larized problem is well-posed for specific values of a regularization parameter, denoted by κ . It is probable that the
well-posedness of the evolution problem, strongly dependent on the value of the κ-parameter, should also depend
on the structural case studied. The cantilever case can be understood at this stage as an elementary structural case,
with moment gradient (or with stress gradient for a more general three-dimensional body). In a certain sense, the
cantilever-beam analysis developed in this paper closes the discussion of implicit versus explicit gradient plasticity
models. It is also shown that the boundary conditions of such an implicit gradient plasticity model have to be
postulated at the elastic–plastic boundary in order to overcome Wood’s paradox.

Closed-form solutions of the elastoplastic deflection were finally derived. As a consequence of this model, the
plastic length evolves during the loading process, a phenomenon often noticed in structural design. These results
are valid for the beam-bending problem, but also for the simple analogy of a bar subjected to distributed axial forces
(or more generally with linearly varying stress). The present implicit gradient plasticity model has to be computed
within a general finite-element framework when dealing with more complex structural systems. An important task
is the development of a variational approach including such non-standard boundary conditions for the implicit
gradient plasticity model. This topic and the thermodynamics background of the presented model are currently
under investigation.
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Appendix: On Wood’s paradox for some standard implicit gradient plasticity models

The standard implicit gradient plasticity model is studied in this appendix. The differential equation of the non-local
plastic curvature χp is given by Eq. 28:

χp + l2
c (κ − 1) χp

′′ = P(L − x) − Mp

k
with κ > 1 (A.1)

with the three boundary conditions,

χp(l0) = 0, χp
′(L) = 0 and χp

′(0) = 0. (A.2)

The relationship between the local plastic curvature χp and the non-local plastic curvature χp can be found in
Eq. 25. Note the fundamental difference with the boundary conditions expressed by Eq. 27. In the standard implicit
gradient plasticity models ([12,13] or [31]), the condition at the boundary of the elastoplastic region

(
χp

′(l0) = 0
)

is replaced by a condition at the physical boundary of the body
(
χp

′(L) = 0
)
. The general solution of the differential

equation Eq. (A.1) is given by Eq. 35:

x ∈ [0; l0] : χp(x) = A cos
x

lc
√

κ − 1
+ B sin

x

lc
√

κ − 1
+ P(L − x) − Mp

k
. (A.3)

The nonlinear system of three equations with three unknowns A, B and l0 is now written as
∣∣∣
∣∣∣∣∣

κ

κ − 1
A cos

l0
lc

√
κ − 1

+ κ

κ − 1
B sin

l0
lc

√
κ − 1

+ P(L − l0) − Mp

k
= 0,

− A

lc
√

κ − 1
sin

L

lc
√

κ − 1
+ B

lc
√

κ − 1
cos

L

lc
√

κ − 1
− P

k
= 0,

B

lc
√

κ − 1
− P

k
= 0.

(A.4)

The following dimensionless parameters may be introduced:

β =
(

1 − PY

P

)
L

lc
≤ 0, ξ = l0

lc
≥ 0 and L∗ = L

lc
(A.5)

and the load-plastic zone relationship is finally written as

β = ξ − κ√
κ − 1

cos ξ−L∗√
κ−1

− cos ξ√
κ−1

sin L∗√
κ−1

for sin

(
L∗

√
κ − 1

)
�= 0. (A.6)

It can be checked that (A.6) and (37) are identical when the elastoplastic boundary and the physical boundary of
the beam can be merged (ξ = L∗). However, it is not possible to connect the elastic and the plastic solution for the
standard implicit gradient plasticity model:

ξ = 0 ⇒ β (ξ = 0) = − κ√
κ − 1

cos L∗√
κ−1

− 1

sin L∗√
κ−1

. (A.7)

As a consequence,

lim
ξ→0

β(ξ) �= 0 (A.8)

Therefore, Wood’s paradox is also met for standard implicit gradient plasticity models presented in [12,13] or [31].
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